annaharmon7820 annaharmon7820
  • 01-05-2018
  • Mathematics
contestada

Given log4(3) =0.7925 and log4(5) =1.1610, use log properties to find log4(240).

Respuesta :

sqdancefan
sqdancefan sqdancefan
  • 01-05-2018
[tex]\log_{4}(240)=\log_{4}(3 \cdot 4^{2} \cdot 5) = \log_{4}(3) +\log_{4}(4^{2}) +\log_{4}(5) = 0.7925 +2 +1.1610 = 3.9535[/tex]

[tex]\log_{4}(240) \approx 3.9535[/tex]
Answer Link

Otras preguntas

1. Make an observation a. Why aren’t the plants in my kitchen growing? 2. State the problem b. I will use three of the same type of plants. I will give plant A
Can three planes separate space into eight regions?
What electrical inventions are most essential to daily living?​
What is the solution to f(x) = g(x), if f(x) = -x and g(x)= x
(8xy) exponent negative 2 times x negative exponent 5 times y negative exponent 1 divided xy
Simplify the following expression. [tex]\frac{3}{11}a -\frac{4}{7}-\frac{1}{3}a+\frac{2}{3}[/tex]
The fraction is 1/2. What would be the denominator 6
Try it Solve this equation: -7x + 12 – 2x = 23 + 13x
What value of t makes the following equation true? 3(1+2t)=3t+5 1. 23 2. 83 3. 2 4. −4 5. −2 6. −23
Solve the inequality 7(x - 2) < -5. x < 9/7 x > 9/7 x < -9/7 x > -9/7